
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/247266804

Processing Persian Text: Tokenization in the Shiraz Project

Article · January 2000

CITATIONS

16
READS

1,268

2 authors:

Karine Megerdoomian

Zoorna Tech Solutions

49 PUBLICATIONS 843 CITATIONS

SEE PROFILE

Remi Zajac

29 PUBLICATIONS 453 CITATIONS

SEE PROFILE

All content following this page was uploaded by Karine Megerdoomian on 01 July 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/247266804_Processing_Persian_Text_Tokenization_in_the_Shiraz_Project?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/247266804_Processing_Persian_Text_Tokenization_in_the_Shiraz_Project?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Processing Persian Text:
Tokenization in the Shiraz Project

Karine Megerdoomian and Rémi Zajac

Memoranda in Computer and Cognitive Science
MCCS-00-322

Computing Research Laboratory
New Mexico State University
Las Cruces, New Mexico
April 2000

Abstract

Prior to morphological analysis or syntactic parsing, a text
needs to undergo tokenization, in order to determine sentence
and word boundaries. This report describes the tokenizer used
in the Shiraz Persian-English machine translation project at
the Computing Research Laboratory. The Persian writing sys-
tem and the methods that can be used in recognizing token
boundaries in written text are presented. The system uses a
low-level language-independent tokenizer, which outputs an
unambiguous sequence of basic tokens. Difficulties arise in
analysis of Persian text since certain detachable morphemes
need to be reattached to the word before morphological analy-
sis takes place. In addition, words are often concatenated in
written form. These pre-processing tasks are accomplished by
a post-tokenizer that contains language-specific information.

Contents

1. Introduction ..1

2. Persian Letters ... 3

3. Word Boundaries ... 6
3.1 Punctuation ..6
3.2 Space .. 7
3.3 Word and Morpheme Boundary .. 7

3.3.1 Character Forms ... 7
3.3.2 Algorithm for Word and Morpheme Boundary Detection 8
3.3.3 Algorithm for Unknown Words ... 9

4. Disambiguating Sentence Boundaries.. 12
4.1 Acronyms... 12

4.1.1 Descriptive Analysis .. 12
4.1.2 Ambiguous Constructions.. 14
4.1.3 Summary .. 15

4.2 Abbreviations ... 15
4.2.1 Descriptive Analsysis ... 15
4.2.2 Ambiguous Constructions .. 16
4.2.3 Summary .. 16

4.3 Abbreviations, Acronyms and Sentence Interaction.. 17

Conclusion .. 19

Appendix... 20

mine
in the

age-
e low-
ation
attach

, but
uage-
types:

paces;

iners.

graphs
he

stage.
es by

istinct
often
ological

tion of
r for
he fact
1

Introduction

Prior to morphological analysis, the text needs to undergo tokenization, in order to deter
sentence and word boundaries. This report provides a description of the tokenizer used

Shiraz project1 at the Computing Research Laboratory. The system uses a low-level langu
independent tokenizer, the output of which is an unambiguous sequence of basic tokens. Th
level tokenizer is then followed by a post-tokenizer, which contains language-specific inform
and operates on the output of the low-level tokenizer. The post-tokenizer is mainly used to re
inflectional elements that have been separated by the low-level tokenizer.

Persian uses the Arabic alphabet (with four additional characters), written from right to left
the characters are converted into Unicode for all processing within the system. The lang
independent tokenizer uses generic character properties to classify strings into basic token

• Word: sequences of letters;

• Number: sequences of digits;

• Separator: a Unicode separator, which includes punctuation characters, dashes and s

• Alphanumeric: a sequence of mixed letters, digits and symbols;

• Symbols: characters such as %, #, etc.;

• Control: characters such as line breaks, tabulations and control characters such as jo

The low-level tokenizer does not segment the text into textual units, such as headers, para
and sentences, and it does not distinguish between various punctuation characters. Hence, tstop,
which usually marks a sentence boundary, and thecomma, are treated identically; the distinction
between various punctuation markers has to be incorporated within the system at a later
Furthermore, Persian written text separates compounds and certain inflectional morphem
using a zero-width-joiner, a control character. Since a control character is treated as a d
token by the low-level tokenizer, the two parts of a Persian compound or inflected word are
separated. The separated parts of an inflected word need to be reattached before morph
analysis applies. Compounds are analyzed at a later stage in the analysis.

This report describes the Persian writing system and the tools that can be used for recogni
token boundaries in written text. It also explains the approach utilized by the post-tokenize
reattaching separated morphemes. A common problem in analyzing Persian text resides in t

1. http://crl.nmsu.edu/Research/Projects/shiraz
1

essor
is alos

t has
s well,

roject.
f the
that words are often concatenated. This problem is currently resolved within the pre-proc
component. The process used by the pre-processor in separating concatenated words
discussed. The final section is devoted to the punctuation mark for ‘stop’ or ‘period’, since i
several roles in marking boundaries. Persian acronyms and abbreviations are described a
although it should be noted that they are not recognized in the current version of the Shiraz p
Throughout this report, the term tokenizer will be used to refer to the module consisting o
low-level tokenizer plus the post-tokenizer.
2

rabic:
iraz

ternal
which
ers is
ented
ogical
ection
orms

d a
tion.
iginal
the

; the

as not
ritten

the

2 to
e they
uide.
is not
2

Persian Letters

Persian uses the Arabic alphabet with four additional letters that do not exist in standard A
pe, che, zheandgâf. A complete list of the Persian alphabet is presented in Table 1. In the Sh
system, the characters are converted into Unicode, which is used for all system-in
processing. Persian distinguishes between the initial, medial and final forms of the letters,
indicate the position of the characters within a word. The recognition of the final form charact
crucial for morphological analysis. In Unicode, the final form characters in Persian are repres
as a zero-width-joiner (a control character) which can be used during processing of morphol
tokens. Determining word boundaries using the character forms is discussed in detail in S
3.3. Note that Table 1 lists the Persian characters in isolated form only; the initial and medial f
of the characters are not displayed.

In order to work with the Persian writing system in an efficient manner, we develope
romanization specifically for the Shiraz project at CRL. It is referred to as the Shiraz romaniza
This romanization was designed to be bijective, so that the text could be put back into the or
Persian format automatically without losing any information. The attempt was to keep
romanization easily readable for the language acquirers hence the four Persian lettersze, zal, zat
and za, which are pronounced /z/, all have a romanization based on the English letter “z”
distinction between the characters is provided by different diacritics. The Persian letteralefcan be
pronounced as almost any vowel, depending on the context it appears in, and therefore it h
been romanized as any one vowel in English. In addition, since short vowels are often not w
in Persian text, the romanization does not provide any short vowels, thus maintaining
ambiguities available in original text.

For the purposes of this document, however, we use the romanization shown in Table
represent the Persian examples. This romanization does not provide any short vowels, sinc
are not available in Persian text. This table also provides the reader with a pronunciation g
Note, however, that the short vowels are not transcribed, hence the pronunciation obtained
the complete and accurate pronunciation of the Persian word.
3

a
As
Table 1: Persian Alphabet

Note:alef with maddandalef are vowels. The lettersvav, heandyecan be either a consonant or
vowel given the context. As consonants, they are pronounced ‘v’, ‘h’ and ‘y’ respectively.
vowels, they double as ‘u’ (as infood), ‘e’ and ‘i’.
4

Table 2: Romanization used in the report

Persian Letters Romanization Pronunciation

alef with madd A father

alef a andor bedor so

be b boy

pe p pool

te t toy

se s sun

jim J Joe

che ch church

he H horse

khe x similar toGerman buch

dal d dog

zal z Zorro

re r similar toSpanish “r”

ze z Zorro

zhe j mirage

sin s sun

shin sh shoe

sat S sun

zat Z Zorro

ta T toy

za Z Zorro

eyn e
andor bedor so or
uh oh (glottal stop)

gheyn Q similar toFrench “r”

fe f fun

ghaf q similar toFrench “r”

kaf k kite

gaf g great

lam l love

mim m Mary

nun n nun

vav v veryor food

he h horse

ye with hamze i youor uh oh (glottal stop)

ye y youor sea

short space (marking a
final form character) ~
5

iform
can be

hin a
either
heme
final

of a
alyzed
pace
ltiple

tive and
ntence

the
pound

de the

tokens;
another
ose that
nd the
s have
n the
3

Word Boundaries

The task of the tokenizer is to detect word boundaries in a written text and to provide a un
segmentation before the processing of the text takes place. In Persian text, word boundaries
delimited by space, punctuation, and the forms of the characters indicating its position wit
word. Words can also be written concatenated. Similarly, some morphemes may appear in
attached or detached form. This section discusses all the possible word and morp
combinations in a written Persian text as well as the possible boundary markers. The
segmentations produced by the tokenizer will treat all words, including the subparts
compound or light verb, as separate tokens. All detachable morphemes, however, will be an
as forming a single token unit with the word from which they are separated by a short s
character (a zero-width-joiner). If the string is ambiguous, then the tokenizer will produce mu
segmentations.

3.1 Punctuation

Certain punctuation marks denote sentence boundaries. In Persian, the stop, the exclama
the interrogation mark are unambiguous boundary indicators. The stop also marks a se
boundary, but it may also appear in the formation of abbreviations or acronyms. Apart from
slash (/), which is used in numbers, and the dash, which could be used to separate com
words, the other punctuation marks unambiguously indicate word boundaries. These inclu
comma, quotes, brackets and colon.

The low-level tokenizer tags all punctuation and dashes as the tokenseparator. The parser used in
the Shiraz project does not take into account any tokens that have not been tagged as Word
all tokens that are not Word tokens are taken to be a hard (i.e., sentence) boundary. Hence,
module needs to distinguish between separators that are sentence boundary markers and th
are word boundary markers, otherwise no syntactic parse will be applied across the latter a
sentential analysis will not be obtained. In our system, the word boundary marking separator
been included within the syntactic grammar. For instance, the comma is incorporated i
syntactic rules to determine a phrasal boundary.
6

ppears

space
e low-
n words

s of
orm
cter is
r both
by the
parate

zero-
the

of a
word

ese

e two
ll be
2) for
later

tion)
g
uded in
3.2 Space

In Persian text, the boundaries for distinct words are usually denoted by a space. No space a

between the two words forming a compound or a light verb construction2. This spacing pattern,
however, is not very consistent and sometimes different words may appear without a
separating them; these concatenated words will be discussed in the following section. In th
level tokenizer, a space is tagged as a separator token and is able to separate distinct toke
successfully.

3.3 Word and Morpheme Boundary

3.3.1 Character Forms

The Persian writing system distinguishes between the final forms and the initial or medial form
a character, depending on its position within a word. This is illustrated in Figure 1. An initial f
does not mean that the character is in the beginning of a word, it only indicates that the chara
not at the end of the word. Characters are in medial form if they have an attaching characte
before and after them. A final form character indicates the end of a word and can be used
tokenizer to determine word boundaries. Hence, two concatenated words can be put into se
tokens if the first word ends in a final form character. These final forms are indicated by a
width-joiner following the character in Unicode. For transliteration purposes, we will use
standardtilda (~) to denote this control character.

Figure 1: Sample Persian character forms

There are certain letters (alef, dal, zal, re, ze, zhe, vav), however, that have only one form
regardless of their position within the word. If such a character ends the first word
concatenated pair, the tokenizer will not be able to use the character form to determine the
boundary (see Section 3.3.3, “Algorithm for Unknown Words”, for the algorithm used in th
situations).

Compound and light verb constructions most often appear without a space separating th
parts. If the first word within the compound ends in a final form character, the two parts wi
separated into distinct tokens by the tokenizer, as shown in (1) for a compound string and in (
a light verb string. Both compounds and light verbs are recognized as a single lexical unit at a
stage in the processing.

2. A light verb constructionis a verbal unit consisting of a preverbal element (usually a noun, adjective, or preposi
followed by a light verb (e.g.,krdn “do”, dadn “give”). The latter has partly or completely lost its original meanin
within this construction. In that sense, the light verb construction behaves like a compound and needs to be incl
the dictionary.

final medial initial

“b”

“g”

“J”
7

either
parated
n with

he low-
ord in
e is
te the
mples
the
nite

eme to
ero-
be as
from

joiner
tached

heme
ed into
o the
.

space
an
The

ese
is a

logical
h is
(1) “riys~Jmhvr”-->“riys”“Jmhvr”
Lit.: head republic

‘President‘

(2) “zng~zdnd”-->“zng”“zdnd”
Lit.: bell hit (past/3pl)

‘(they) phoned‘

Certain morphemes always appear attached to the word whereas others could be written
attached or separated by a zero-width-joiner. Rarely, the detached morphemes appear se
from the word by an intervening space. The attached morphemes are analyzed as one toke
the word they appear on, but detached morphemes will be treated as a separate token by t
level tokenizer. The post-tokenizer is then used to join the detached morpheme back on the w
order to form a single token as input to the morphological analyzer. When a morphem
reattached to the stem, a short space character (~) or zero-width-joiner must separa
morpheme and the word. The reason for the insertion of this character is illustrated in the exa
below. Consider the string in (3), which consists of a noun meaning ‘letter’ followed by
Indefinite marker. The low-level tokenizer will separate the stem noun and the indefi
morpheme into two distinct tokens as shown. When the post-tokenizer reattaches the morph
the stem, it should insert a zero-width-joiner in order to obtain the original string. If the z
width-joiner was not inserted between the word and the morpheme, the resulting string will
given in (4), which is a different word and morpheme combination altogether, as can be seen
the translation provided. Hence, the post-tokenizer algorithm should introduce a zero-width-
before reattaching a morpheme in order to maintain the distinction between attached and de

inflection in Persian.3

(3) “namh~ay”-->“namh”“ay”
letter-Indef

‘a letter’

(4) “namhay”
name-Plur-Ezafe

‘(the) names of’

3.3.2 Algorithm for Word and Morpheme Boundary Detection

The algorithm used by the post-tokenizer needs to consider all the possible word and morp
combinations and provide all the segmentation patterns. In the final result, words are separat
distinct tokens. Morphemes that appear in attached form in the text will remain attached t
stem. Detached morphemes will appear separated by a short space (~) or zero-width-joiner

As an example, consider the string “shrab~xvb” (=good wine), which is separated by a short
character indicating a final form letter. For all occurrences of final form letters followed by
initial form character, the low-level tokenizer separates the string into two distinct tokens.
string in this example will be separated into the two distinct tokens “shrab” and “xvb”. If th
tokens represent two distinct words, the segmentation is complete. If one of the strings
morpheme, however, it will need to be reattached before the strings are sent to the morpho
analyzer. This is done in the post-tokenizer. The following provides this algorithm, whic
applied to the output of the low-level tokenizer.

3. The Ezafe is a morpheme that links the head of a phrase to the following constituents.
8

st the

the

tions
ith an

tracted
these

ill not
actual
sition
ords
rated the

t can be
Post-Tokenizer Algorithm:

We look at two consecutive strings in each case. Each token is to be checked again

morphemes list4.

• If both strings are not morphemes, they remain separated. Nothing needs to be done.

(5) “shrab” “xvb”➝“shrab”“xvb”
 wine good

• If one of the strings is a morpheme which is not ambiguous with a word, reattach
morpheme. Insert a zero-width-joiner between word and morpheme.

(6) “kvtah” “tryn”-->“kvtah~tryn”
short est

• If one of the strings is a morpheme which is ambiguous with a word, two segmenta
result: In one case, the strings remain detached; in the other, they get reattached w
intervening zero-width-joiner.

(7) “my~” “rqSm~”-->1. “my” “rqSm”
IMPdancing(1sg)2. “my~rqSm”

‘(I) am dancing.’
[where “my” can also mean “wine”]

3.3.3 Algorithm for Unknown Words

Concatenated words are a very common site in Persian text. The examples in (8) were ex
from our on-line corpus; they represent various instances of concatenated words. In all of
cases, the first word does not end in a final form character, hence the low-level tokenizer w
be able to separate the words into distinct tokens. As shown in these examples, besides
compounds and light verbs, short prepositions, conjunctions and the object-marking postpo
appear next to the following or preceding word without an intervening space. Two distinct w
may also appear concatenated. The last example shows a concatenated case that has sepa
parts of a light verb. In this example, the object-marking postpositionra of the previous word has
been concatenated to the preverbal element (rd) of the light verbrd krdnd (‘they refused’), thus
separating the two parts of the light verb.

(8) a. compoundsamvrxarJh--> amvr xarJh
 affairs foreign

‘foreign affairs’
b. light verbspyshnhadkrdnd--> pyshnhad krdnd

proposedid(3pl)
‘(they) proposed.’

c. prepositionazShyvnystha--> az Shyvnystha
fromZionists

‘from the Zionists’
d. conjunctiontablvv-->tablvv

painting and
‘painting and’

4. The Appendix provides a list of the morphemes that can appear detached with an indication of the ones tha
ambiguous with a word.
9

m to
atenated
word
n as in
stinct
space

dergo
(with

ms are

these
cter in
ation

lso
not

h a
the
ance,

ndergo

ent
t

after
ed in
in the
e. postpositionkshvrra-->kshvrra
countryObj

‘the country’ (object of sentence)
f. distinct wordsfrAyndbykarsazy-->frAyndbykarsazy

processunemployment
‘(the) process of unemployment’

nystndayran-->nystndayran
are notIran

‘..(they) are not Iran..’
g. separated wordsrard krdnd-->rard krdnd

Obj refusal did(3pl)
‘.. (they) refused ..’

These examples show that it is essential for a Persian tokenizer to include an algorith
recognize and separate concatenated words.The previous section discussed cases of conc
words in which the first word ends in a final form character that can be used to detect the
boundary. If the concatenated word ends in a character that does not have a final form versio
the examples in (8), then the low-level tokenizer is unable to recognize the two words as di
tokens. We suggest to apply an algorithm to these concatenated words that will insert a
following characters without a final form. These characters arealef(a), dal(d), zal(z), re(r), ze(z),
zhe(j), vav(v).Since one or both words may be inflected, the separated tokens need to also un
morphological analysis. In the current Shiraz system, the algorithm has been implemented
slight variations) in the pre-processor component of the system, where concatenation proble

resolved before analysis of text begins5.

Unknown Word Algorithm

• For all occurrences of characters that do not have a final form (i.e.,a d z r z j v), the
tokenizer produces two segmentations: one in which a space is inserted following
characters and one without a space. A space need not be inserted after the final chara
the string. We could eliminate some of the unwanted cases by discarding any combin
that contains a single letter (except for “v”, which is the conjunction ‘and’). It is a
possible to eliminate certain combinations if the last string is a morpheme which is
ambiguous with a word. For instance, if the stringmsafryn (=travelers) results in the
segmentation “msafr” “yn”, since “yn” is a plural morpheme and it is not ambiguous wit
word, this particular segmentation will be eliminated. As an illustration, consider
example in (9), where all single letter segmentations have been eliminated. In this inst
a space is inserted following the charactersd, v, r.

(9) “dvrdnya”-->1."dv” “rd” “nya”
around world2."dvr” “dnya” [correct segmentation]

3."dvrd” “nya”
4."dv” “rdnya”

• Since the concatenated words may be conjugated, the segmented parts need to u
morphological analysis before being looked up in the dictionary. (10) is a light verbchaqv
zd(‘(he/she) stabbed’; Lit.: knife hit-3sg) with its parts concatenated. The preverbal elem
chaqv(knife) ends inv, a character that does not have a final form, and the verbal parzd

5. A more efficient method might be to apply this algorithm only to words that have not been recognized
morphological analysis and dictionary look-up (i.e., unknown words). Certain simplifications that have been allow
the pre-processor component can then be eliminated since the algorithm will not be running on every single word
text, but only on unknown words.
10

(hit-3sg) is conjugated. In order to recognize the verb in the dictionary,zdhas to go through
morphological analysis in order to obtain the citation form of the verb:zdn(to hit).

(10) “chaqvzd”--> 1. “cha” “qvzd”
2. “chaqv” “zd” [correct segmentation]

3. “cha” “qv” “zd”
11

at the
cation
xt is a
been
s are
, but it

istent
and
tences
ym or

ronym
ent of the

s or
t these
certain
could
biguous
or that
tions,
needed

rs and
acters
4

Disambiguating Sentence Boundaries

The stop is an ambiguous punctuation mark in Persian text since it can represent a period
end of a sentence or it can be part of an abbreviation or an acronym. This report is a specifi
for disambiguating the sentence boundary by determining whether a stop encountered in te
hard boundary marker or part of an abbreviation or acronym. This specification has not
included in the current version of the Shiraz tokenizer, since abbreviations and acronym
extremely rare in our corpus (3 acronyms and no abbreviations in a 3000-sentence corpus)
should be considered for a more complete tokenization process.

Although a stop is usually followed by a space in Persian text, this pattern is not very cons
and oftentimes the stop is immediately followed by another character. Acronyms
abbreviations, however, have an easily recognizable structure. Hence, in order to isolate sen
in a Persian text, the tokenizer should determine whether the stop is an element of an acron
an abbreviation before treating it as a sentence boundary. Note that if the abbreviation or ac
appears at the end of the sentence, the stop can be a sentence boundary as well as an elem
token.

This report defines certain structures that could potentially be recognized as acronym
abbreviations. When a stop is encountered in a string, the latter could be matched agains
structures. The system may also contain sub-dictionaries in order to determine whether a
string belongs to the abbreviation or acronym token classes. If the match fails, the tokenizer
proceed to segment sentences. In certain cases, the string containing the stop may be am
between two constructions. In such cases, the tokenizer will produce all alternate parses f
structure. Section 4.3 brings together all the possible combinations of acronyms, abbrevia
and stops that denote sentence boundaries, and provides an outline of the tokenization rules
to resolve the ambiguities produced.

4.1 Acronyms

4.1.1 Descriptive Analysis

The acronym could be identified by its surface structure, based on a conjunction of characte
punctuation. The most general format for forming an acronym consists of one or more char
12

cter
3 on

before

12),
r is

m the

at are
, the
e last
n non-

ian and
y are

ve not
(13).

proper

ers in
(ending in a final form if available) and followed by a stop. In this format, each Roman chara
of the acronym is transliterated into Persian according to the transliteration pattern in Table
page 14. This is illustrated in the examples below. In the examples in (11), the last character

the stop ends in a final form6 as marked by the short space character ~. In the acronyms in (
however, since the Persian charactersr anda do not have a final form, the short space characte
not available.

(11) af~.by~.Ay~FBI
by~.by~.sy~BBC

(12) ar.py~.Jy~RPG
ka.g~.b~KGB

There exist, however, variations to this format. Certain magazines and newspapers for
acronyms without a stop as shown in (13).

(13) by~by~sy~BBC

The acronyms that can be represented in this format usually consist of Roman letters th
transliterated into Persian with an ending character that has a final form. In other words
examples in (11) could be written without a stop separating the transliterated forms since th
character before each stop is a final form character. The examples in (12), however, contai
final form characters before the stop (e.g.r anda) and thus could not be written without it.

Certain words that are considered acronyms in English are treated as proper nouns in Pers
are not represented by a letter by letter transliteration; they are written instead as the
pronounced as shown in the following examples.

(14) syaCIA
aydzAIDS

Note that all acronyms in the language are transliterated forms of foreign acronyms. We ha
found any Persian acronyms written in the format described in the examples (11) through
Instead, Persian acronyms follow the pattern illustrated in (14) and should be treated as
names. The examples shown below are instances of such acronyms, wheresavakis the acronym
for sazman amnyt v a’Tla’at kshvr(Security and Information Agency of the Country), andndaJa
stands fornyrvy dryayy artsh Jmhvry aslamy yran(Marine Forces of the Military of Islamic
Republic of Iran).

(15) savak~(Savak)
ndaJa(Nedaja)

6. See the document “Persian Tokenization”, included in this volume, for a description of final form charact
Persian. The characters that lack the final form area, d,z, r, z, zh, v.
13

other
one
s the
n the

If the
tion

r.
Table 3: Roman characters and the corresponding Persian transliterations

4.1.2 Ambiguous Constructions

Since acronyms have an easily recognizable structure, they are not usually ambiguous with
constructions. The only acronym format that might be ambiguous with words is the
exemplified in (13) which appears without any stops. The construction in this example ha
surface form of a compound consisting of three parts and it can easily be recognized i
compound lookup component.

When a potential acronym has been detected, it could then be checked in the dictionary.
token does not exist in the dictionary, it can be translated following either the translitera
patterns given in Table 3.

The stop ending an acronym is also ambiguous with a full-stop, a sentence boundary marke

Roman
character Persian transliteration

A a (or A word-initially)

B by~or b~

C sy~

D dy~

E ay~

F af~

G g~

H ach~

I ay~

J Jy~

K ky~or ka

L al~

M am~

N an~

O a

P py~

Q

R ar

S as~

T ty~

U yv

V vy~

W dblyv

X ayks~

Y vay~

Z z
14

letters

p is

not

es it

hemes
ens are

letter

stop is

e
in

ars in
4.1.3 Summary

Format
The format for acronyms could be represented by the following rules:
For the case of acronyms, the characters [Aa-y] do not represent an arbitrary sequence of
but are the Persian transliterations of foreign letters following the formats given in Table 3.

1. ([Aa-y]+\~?\.)+[Aa-y]+\~?\.?
One or more combination of one or more letters followed by a stop. The last sto
optional. This rule represents the examples shown in (11) and (12).

2. ([Aa-y]+\~)+[Aa-y]+\~?
One or more combination of one or more letters, ending in a final-form character,
followed by a stop. This is the format illustrated in example (13).

Ambiguities
Format 1 above is not ambiguous with words, but it may end with a stop, which mak
ambiguous with the end of a sentence.

Format 2, on the other hand, represents acronyms that are ambiguous with words and morp
but are not potential markers for an end of sentence since they contain no stops. These tok
treated as compounds, hence they are sent to the low-level tokenizer as is.

4.2 Abbreviations

4.2.1 Descriptive Analsysis

Abbreviations can appear as a single character with or without a stop, as shown in (16). The
v is not usually written without a stop sincev is a word in Persian, the conjunction “and”. A word
is also abbreviated if it consists of one or more characters and the last character before the
left non-final as illustrated in the examples in (17), where characters such asm or g that have final

forms, appear without a short space character (~).7 Note that if the last character is among thos
which do not have a final form (e.g.,r), this distinction would not be available as the examples
(18) show.

(16) S~for SfHh~(=page)
m~for mylady~ (=A.D.)
m~.formylady~(=A.D.)

(17) Alm.forAlmany~(=German)
ang.foranglysy~(=English)

(18) fr. forfransh~ (=French)
ar.for armny~ (=Armenian)

The example below indicates the usual format for abbreviating authors’ names:

7. In order to obtain a non-final form before a stop, a control character (the zero-width-non-joiner, ZWNJ) appe
certain encodings to force the non-final form of the letter.
15

three

ating
last
es, the

s mark

)) are
f the
as an

tence.
of the

does
d. In
s, the
iation

y a

orm,
(19) J~. m~.forJlal~ mtyny~ (Jalal Matini)

The abbreviation formats, however, are not very consistent. Example (20) illustrates the

possible abbreviation forms used, in various articles in the same magazine8, for indicating the
lunar calendar yearhJry~ qmry~.As can be seen from these cases, the two characters abbrevi
the lexical element can be written with stops following both, or a stop following only the
character, or simply separated by a space without any stops. Note that in all of these instanc
first character appears in non-final form whereas the last character is final.

(20) h.q~.
h q~.
h q~

4.2.2 Ambiguous Constructions

Once more, any stop appearing on an abbreviation is ambiguous with a full-stop and can thu
the end of a sentence.

Any of the single character abbreviation patterns (i.e., the examples in (16), (19) and (20
unambiguous with words but if followed by a stop, these tokens might also indicate the end o
sentence. In these cases, the tokenizer should produce both possibilities: the token
abbreviation only or the token as an abbreviation but also indicating the end of the sen
Similar ambiguous outputs should be available when the tokenizer encounters a token
format in (17).

If the tokenizer finds a combination of two or more letters ending in one of the characters that
not have a final form as shown in (18), the string could be either an abbreviation or a wor
addition, the stop is ambiguous with a period at the end of the sentence. In such case
tokenizer will produce three outputs: the token can be an abbreviation, it could be an abbrev
marking the end of a sentence, or it could be a word marking the end of a sentence.

4.2.3 Summary

Format
The following formats are then available for abbreviations in a Persian text:

1. Single letter: A single letter ending in final form, the stop is optional.
[Aa-y]\~\.?
This format is exemplified in (16).

2. Non-final forms: One or more letters ending in a (forced) non-final form, followed b
stop.
[Aa-y]+[FF]\.
where [FF] is the set of characters that have a final form.
This rule represents the formats illustrated in the examples in (17).

3. Non-final characters: One or more letters ending in a character without a final f
followed by a stop.
[Aa-y]+[NFF]\.

8. Majalle-ye Iranshenasi(Iranshenasi - Journal of Iranian Studies)
16

form

h are
op is
ible
d case,

word.
f the
ion, the
ntence

ll the
n rules
tence

nizer
as

n is

n is
more,
en by
ate a
eds to
the new
where [NFF] is the set of characters that don’t have a final form.
This rule represents the examples in (18).

4. Initials: Single letters separated with stops and/or spaces, followed by a single final
character. Final stop optional.
[Aa-y]\~?[\.] ?[Aa-y]\~?\.?
The examples in (19) and (20) are represented by this rule.

Ambiguities
Format rules 1, 2, and 4 all represent tokens that are not ambiguous with a word, but whic
ambiguous with the end of the sentence if they are followed by a stop. Note that the st
optional in rules 1 and 4, but it is obligatory in rule 2. The tokenizer will then produce two poss
outputs: in the first case, the token is to be treated only as an abbreviation, and in the secon
the token is an abbreviation marking the end of the sentence.

Rule 3 denotes a token which is potentially ambiguous between an abbreviation and a
Furthermore, since it is followed by a stop, then it is also a potential marker for the end o
sentence. The final output then consists of three possible cases: the token is an abbreviat
token is an abbreviation marking the end of the sentence, or the token is a word marking a se
boundary.

4.3 Abbreviations, Acronyms and Sentence Interaction

In this section we bring together the previous discussion by presenting an outline of a
possible cases for abbreviations and acronyms. The section also provides the tokenizatio
needed to resolve the ambiguities resulting from the interaction of these tokens with sen
boundaries.

Following the application of the format rules described in the previous sections, the toke
recognizes potential acronyms and abbreviations in the text. Each token should be marked

• ambiguous or not ambiguous with a word.

• ambiguous or not ambiguous with an end of sentence (i.e., determine if the toke
followed by a stop or not).

If a token is not ambiguous with a word, then the tokenizer creates the token. If a toke
ambiguous with a word, then the tokenizer should create, in addition, a word token. Further
if a token is not ambiguous with the end of the sentence (EOS), then no action should be tak
the tokenizer. However, if the token is followed by a stop, then the tokenizer should also cre
new sentence boundary as illustrated in the figure below. In order to do this, the tokenizer ne
copy the open sentence set (e.g., copy sentence 1 in the figure into sentence 2) and close
17

hould
each

ation
these
set thus created. A new sentence set is then opened (sentence 3 in the figure).

Figure 2: Creating a sentence boundary

The table below shows the ambiguity combinations possible and the action the tokenizer s
take in each case. The format rules that were used for the recognition of the token involved in
instance are also indicated in the Input Token column. (The Acronym rule 1 and Abbrevi
rules 1 and 4 are present in both of the first cases because the final stop is optional in
instances.).

Table 4: Tokenization Rules for segmenting Acronyms, Abbreviations and Sentence Boundaries.

Input token Tokenizer output

1. Token is not ambiguous with a word/
morpheme Token is not ambiguous with
EOS

Format Rules:
Acronym rule 1
Abbreviation rules 1, 4

• Create the token as an acronym or an
abbreviation

• Proceed to the next token

2. Token is not ambiguous with a word/
morpheme
Token is ambiguous with EOS

Format Rules:
Acronym rule 1
Abbreviation rules 1, 2, 4

• Create the token as an acronym or as an
abbreviation

• Create sentence boundary

• Proceed to the next token. If there is a
stop, proceed to the next token
following the stop.

3. Token is ambiguous with a word/morpheme
Token is not ambiguous with EOS

Format Rules:
Acronym rule 2

• Create the token as word

• Proceed to the next token

4. Token is ambiguous with a word/morpheme
Token is ambiguous with EOS

Format Rules:
Abbreviation rule 3

• Create the token as an abbreviation

• Create word token

• Create sentence boundary

• Proceed to the next token following the
stop

• •

Word1 Token

Sentence1

Sentence2 Sentence3
18

kenizer
pecific
any

ate most
ords.
which

time
s for

to be
5

Conclusion

The Persian tokenizer used in the Shiraz project uses a language-independent low-level to
to separate textual elements into basic tokens. A post-tokenizer containing language-s
information is then applied to the output of the low-level tokenizer in order to reattach
separated detachable morphemes. Hence, the Persian tokenizer can successfully separ
concatenated words into distinct tokens, without losing the inflection that appears on the w
The rest of the concatenated words are taken care of in the pre-processor component
accurately inserts a space between the words.

For a more complete tokenizer, the grammars for recognizing numerical, date and
expressions in newspaper texts should also be included. In addition, specification
disambiguating sentence boundaries and recognition of acronyms and abbreviations are
incorporated in the tokenizer.
19

kenizer
t some
te all

strict
enizer
uting
Appendix

This appendix contains a list of detachable Persian prefixes and suffixes used by the post-to
in reattaching separated morphemes. These affixes may be ambiguous with words. Note tha
members of this list consist of the concatenation of several affixes. It is possible to enumera
such cases in Persian since there are a limited number of affixes and they follow
morphotactic patterns. Listing the combinations of affixes, as done here, allows the post-tok
to recognize the detached suffixes and prefixes without using an algorithm for comp
morphotactics.

Persian Affix Inflection Information Affix Type Ambiguous with word

by derivationalor subjunctive particle prefix no

my imperfective verbal particle prefix no

nmy negation + imperfective particle prefix no

ha plural suffix yes (interjection ‘hey’)

hay plural + ezafe suffix yes (interjection ‘hey’)

ay indefinite marker suffix yes (interjection ‘hey’)

am copula/auxiliary/pronoun clitic (1sg) suffix yes (noun ‘mother’ -arabic)

shan pronoun clitic (3pl) suffix yes (noun ‘dignity’)

tr comparative suffix yes (adjective ‘wet’)

try comparative + copula (2sg) suffix yes (adj. ‘wet’ + copula)

ayst indefinite + copula (3sg) suffix yes (noun/interj. ‘stop’)

ast auxiliary (3sg) suffix yes (copula/3sg ‘is’)

hayy / haiy plural + indefinite suffix no

haym plural + pronoun clitic (1sg) suffix no

hayt plural + pronoun clitic (2sg) suffix no

haysh plural + pronoun clitic (3sg) suffix no

hayman plural + pronoun clitic (1pl) suffix no

haytan plural + pronoun clitic (2pl) suffix no

hayshan plural + pronoun clitic (3pl) suffix no

hast plural + copula (3sg) suffix no

hayym plural + copula (1pl) suffix no

hayyd plural + copula (2pl) suffix no

haynd plural + copula (3pl) suffix no

at pronoun clitic (2sg) suffix no

ash pronoun clitic (3sg) suffix no

man pronoun clitic (1pl) suffix no

tan pronoun clitic (2pl) suffix no

aym auxiliary (1pl) suffix no
20

View publication stats
ayd auxiliary (2pl) suffix no

and auxiliary (3pl) suffix no

tryn superlative suffix no

trynha superlative + plural suffix no

trha comparative + plural suffix no

trynm superlative + pronoun clitic (1sg) suffix no

trynt superlative + pronoun clitic (2sg) suffix no

trynsh superlative + pronoun clitic (3sg) suffix no

trynman superlative + pronoun clitic (1pl) suffix no

tryntan superlative + pronoun clitic (2pl) suffix no

trynshan superlative + pronoun clitic (3pl) suffix no

; (hamze) ezafe suffix no

Persian Affix Inflection Information Affix Type Ambiguous with word
21

https://www.researchgate.net/publication/247266804

	Abstract
	Contents
	3.1 Punctuation 6
	3.2 Space 7
	3.3 Word and Morpheme Boundary 7
	4.1 Acronyms 12
	4.2 Abbreviations 15
	4.3 Abbreviations, Acronyms and Sentence Interaction 17

	1
	Introduction

	2
	Persian Letters
	Table 1: Persian Alphabet
	Table 2: Romanization used in the report

	3
	Word Boundaries
	3.1 Punctuation
	3.2 Space
	3.3 Word and Morpheme Boundary
	3.3.1��� Character Forms
	Figure 1�:�� Sample Persian character forms
	(1) “riys~Jmhvr” --> “riys” “Jmhvr” Lit.: head republic ‘President‘
	(2) “zng~zdnd” --> “zng” “zdnd” Lit.: bell hit (past/3pl) ‘(they) phoned‘
	(3) “namh~ay” --> “namh” “ay” letter-Indef ‘a letter’
	(4) “namhay” name-Plur-Ezafe ‘(the) names of’

	3.3.2��� Algorithm for Word and Morpheme Boundary Detection
	(5) “shrab” “xvb” › “shrab” “xvb” wine good
	(6) “kvtah” “tryn” --> “kvtah~tryn” short est
	(7) “my~” “rqSm~” --> 1. “my” “rqSm” IMP dancing(1sg) 2. “my~rqSm” ‘(I) am dancing.’ [where “my” ...

	3.3.3��� Algorithm for Unknown Words
	(8) a. compounds amvrxarJh --> amvr xarJh affairs foreign ‘foreign affairs’ b. light verbs pyshnh...
	(9) “dvrdnya” --> 1."dv” “rd” “nya” around world 2."dvr” “dnya” [correct segmentation] 3."dvrd” “...
	(10) “chaqvzd” --> 1. “cha” “qvzd” 2. “chaqv” “zd” [correct segmentation] 3. “cha” “qv” “zd”

	4
	Disambiguating Sentence Boundaries
	4.1 Acronyms
	4.1.1��� Descriptive Analysis
	(11) af~.by~.Ay~ FBI by~.by~.sy~ BBC
	(12) ar.py~.Jy~ RPG ka.g~.b~ KGB
	(13) by~by~sy~ BBC
	(14) sya CIA aydz AIDS
	(15) savak~ (Savak) ndaJa (Nedaja)
	Table 3: Roman characters and the corresponding Persian transliterations

	4.1.2��� Ambiguous Constructions
	4.1.3��� Summary
	Format
	1. ([Aa-y]+\~?\.)+[Aa-y]+\~?\.? One or more combination of one or more letters followed by a stop...
	2. ([Aa-y]+\~)+[Aa-y]+\~? One or more combination of one or more letters, ending in a final-form ...
	Ambiguities

	4.2 Abbreviations
	4.2.1��� Descriptive Analsysis
	(16) S~ for SfHh~ (=page) m~ for mylady~ (=A.D.) m~. for mylady~ (=A.D.)
	(17) Alm. for Almany~ (=German) ang. for anglysy~ (=English)
	(18) fr. for fransh~ (=French) ar. for armny~ (=Armenian)
	(19) J~. m~. for Jlal~ mtyny~ (Jalal Matini)
	(20) h.q~. h q~. h q~

	4.2.2��� Ambiguous Constructions
	4.2.3��� Summary
	Format
	1. Single letter: A single letter ending in final form, the stop is optional. [Aa-y]\~\.? This fo...
	2. Non-final forms: One or more letters ending in a (forced) non-final form, followed by a stop. ...
	3. Non-final characters: One or more letters ending in a character without a final form, followed...
	4. Initials: Single letters separated with stops and/or spaces, followed by a single final form c...
	Ambiguities

	4.3 Abbreviations, Acronyms and Sentence Interaction
	Figure 2�:�� Creating a sentence boundary
	Table 4: Tokenization Rules for segmenting Acronyms, Abbreviations and Sentence Boundaries.
	1. Token is not ambiguous with a word/ morpheme Token is not ambiguous with EOS Format Rules: Acr...
	2. Token is not ambiguous with a word/ morpheme Token is ambiguous with EOS Format Rules: Acronym...

	5
	Conclusion
	Appendix

