See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/247266804

Processing Persian Text: Tokenization in the Shiraz Project

Article - January 2000

CITATIONS

16
2 authors:
"$. Karine Megerdoomian
L Zoorna Tech Solutions
49 PUBLICATIONS 843 CITATIONS

SEE PROFILE

All content following this page was uploaded by Karine Megerdoomian on 01 July 2014.

The user has requested enhancement of the downloaded file.

READS
1,268

Remi Zajac

29 PUBLICATIONS 453 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/247266804_Processing_Persian_Text_Tokenization_in_the_Shiraz_Project?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/247266804_Processing_Persian_Text_Tokenization_in_the_Shiraz_Project?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Remi-Zajac?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karine-Megerdoomian?enrichId=rgreq-ca198f859bc2fde53ec4ff14a6adfbc2-XXX&enrichSource=Y292ZXJQYWdlOzI0NzI2NjgwNDtBUzoxMTQxNjE5NTA0MDA1MTJAMTQwNDIyOTczODMyOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Processing Persian Text:
Tokenization in the Shiraz Project

Karine Megerdoomian and Rémi Zajac

Memoranda in Computer and Cognitive Science
MCCS-00-322

Computing Research Laboratory
New Mexico State University
Las Cruces, New Mexico

April 2000

Abstract

Prior to morphological analysis or syntactic parsing, a text
needs to undergo tokenization, in order to determine sentence
and word boundaries. This report describes the tokenizer used
in the Shiraz Persian-English machine translation project at
the Computing Research Laboratory. The Persian writing sys-
tem and the methods that can be used in recognizing token
boundaries in written text are presented. The system uses a
low-level language-independent tokenizer, which outputs an
unambiguous sequence of basic tokens. Difficulties arise in
analysis of Persian text since certain detachable morphemes
need to be reattached to the word before morphological analy-
sis takes place. In addition, words are often concatenated in
written form. These pre-processing tasks are accomplished by
a post-tokenizer that contains language-specific information.

Contents

IR 1 Yo [T £ o S 1.
2. PEISIAN LELEEIS ... it e e et et et e bbb aaaaaas 3
VLY o] o I =10 0] g o F= 1= TSSO 6
3.1 PUNCLUALION ...ttt e e e e e e e e e e e e e e e ae e b es B
3.2 SPACE ..ttt eeaee e T......
3.3 Word and Morpheme BOUNUAIYuuuuuiiiiiiiieii e e e e e e e e e e e eeeeeeeannnnnes 7
3.3.1 Character FOIMMISuuiiiiii et e e e et et ettt a e e e e e e e e e e e e e eeeeennnnes 7
3.3.2 Algorithm for Word and Morpheme Boundary Detectionccccoccvivvvvnnnnee. 8
3.3.3 Algorithm for UNKNOWN WOTASuuuiiiiiiiiiiccceiceeeeeeiiss s e e e e e e e e e e e 9
4. Disambiguating Sentence BOUNUAIIES............uuuuuiiiiiiiiiiiiieieee e 12
N A o] (0] 0] 1 PR PPRT 2....... 1
4.1.1 DeSCrIPtiVe ANAIYSISccouiiiii i 12
4.1.2 AMDIgUOUS CONSIIUCTIONS.ceeiiiiiiiiiiiiiiiit ettt 14
A.1.3 SUMIMABIY ..oiinieiiiie e ettt e et e e et e e e et e e e et e e e et e e e et r e e e et e e e st e e aesa e eaetaneeeeanneenees 15
4.2 ADDIEVIALIONS ..ottt 15
4.2.1 DESCHIPLVE ANAISYSISuuiiiiiiiiiiiiiiiiiie e e e e e e e e e e e e e e e e e 15
4.2.2 AMDIgUOUS CONSIIUCTIONSiiieececieceeeeeeeee e e e e e e e e e e e e e e e e e aes 16
G YU 01 0 1 = T Y PSPPI 16
4.3 Abbreviations, Acronyms and Sentence Interaction.............oooeevvviveiiiiiiieeeeeeeeeeeee, 17
CONCIUSION ...ttt e e e e e e e e et et e et bbb e e e e e e e e e e e eeeeeeennnes 19.......

Y o] o =] 2 T [G 20......

1

Introduction

Prior to morphological analysis, the text needs to undergo tokenization, in order to determine
sentence and word boundaries. This report provides a description of the tokenizer used in the

Shiraz project at the Computing Research Laboratory. The system uses a low-level language-
independent tokenizer, the output of which is an unambiguous sequence of basic tokens. The low-
level tokenizer is then followed by a post-tokenizer, which contains language-specific information
and operates on the output of the low-level tokenizer. The post-tokenizer is mainly used to reattach
inflectional elements that have been separated by the low-level tokenizer.

Persian uses the Arabic alphabet (with four additional characters), written from right to left, but
the characters are converted into Unicode for all processing within the system. The language-
independent tokenizer uses generic character properties to classify strings into basic token types:

» Word: sequences of letters;

* Number: sequences of digits;

e Separator: a Unicode separator, which includes punctuation characters, dashes and spaces;
» Alphanumeric: a sequence of mixed letters, digits and symbols;

» Symbols: characters such as %, #, etc.;

» Control: characters such as line breaks, tabulations and control characters such as joiners.

The low-level tokenizer does not segment the text into textual units, such as headers, paragraphs
and sentences, and it does not distinguish between various punctuation characters. Hetuge, the
which usually marks a sentence boundary, andctirama are treated identically; the distinction
between various punctuation markers has to be incorporated within the system at a later stage.
Furthermore, Persian written text separates compounds and certain inflectional morphemes by
using a zero-width-joiner, a control character. Since a control character is treated as a distinct
token by the low-level tokenizer, the two parts of a Persian compound or inflected word are often
separated. The separated parts of an inflected word need to be reattached before morphological
analysis applies. Compounds are analyzed at a later stage in the analysis.

This report describes the Persian writing system and the tools that can be used for recognition of
token boundaries in written text. It also explains the approach utilized by the post-tokenizer for
reattaching separated morphemes. A common problem in analyzing Persian text resides in the fact

1. http://crl.nmsu.edu/Research/Projects/shiraz

that words are often concatenated. This problem is currently resolved within the pre-processor
component. The process used by the pre-processor in separating concatenated words is alos
discussed. The final section is devoted to the punctuation mark for ‘stop’ or ‘period’, since it has
several roles in marking boundaries. Persian acronyms and abbreviations are described as well,
although it should be noted that they are not recognized in the current version of the Shiraz project.
Throughout this report, the term tokenizer will be used to refer to the module consisting of the
low-level tokenizer plus the post-tokenizer.

2

Persian Letters

Persian uses the Arabic alphabet with four additional letters that do not exist in standard Arabic:
pe, che, zhandgéaf. A complete list of the Persian alphabet is presented in Table 1. In the Shiraz
system, the characters are converted into Unicode, which is used for all system-internal
processing. Persian distinguishes between the initial, medial and final forms of the letters, which
indicate the position of the characters within a word. The recognition of the final form characters is
crucial for morphological analysis. In Unicode, the final form characters in Persian are represented
as a zero-width-joiner (a control character) which can be used during processing of morphological
tokens. Determining word boundaries using the character forms is discussed in detail in Section
3.3. Note that Table 1 lists the Persian characters in isolated form only; the initial and medial forms
of the characters are not displayed.

In order to work with the Persian writing system in an efficient manner, we developed a
romanization specifically for the Shiraz project at CRL. It is referred to as the Shiraz romanization.
This romanization was designed to be bijective, so that the text could be put back into the original
Persian format automatically without losing any information. The attempt was to keep the
romanization easily readable for the language acquirers hence the four Persiarzéettakszat

and za, which are pronounced /z/, all have a romanization based on the English letter “z”; the
distinction between the characters is provided by different diacritics. The Persiaralefigan be
pronounced as almost any vowel, depending on the context it appears in, and therefore it has not
been romanized as any one vowel in English. In addition, since short vowels are often not written
in Persian text, the romanization does not provide any short vowels, thus maintaining the
ambiguities available in original text.

For the purposes of this document, however, we use the romanization shown in Table 2 to
represent the Persian examples. This romanization does not provide any short vowels, since they
are not available in Persian text. This table also provides the reader with a pronunciation guide.
Note, however, that the short vowels are not transcribed, hence the pronunciation obtained is not
the complete and accurate pronunciation of the Persian word.

Table 1: Persian Alphabet

'Glyph| Name | Glyph Name
| da ta ’ i alef madd
B Za i alef
¢ ey o be
¢ gheyn 7 pe
5 fe = te
B chaf & e
s kaf £ jirn
2 gaf & che
J lam r He
f mirm = khe
o nun 4 dal
¥ vav 3 zal
s he - re
i ¥e > ze
& ve hamze r 5 zhe
£ hamze . i
[alef hamze b shin
J waw hamze Lo ot
E reye e zat

] Tanwin

Note: alef with maddandalefare vowels. The lettengav, heandye can be either a consonant or a
vowel given the context. As consonants, they are pronounced ‘v, ‘h’ and 'y’ respectively. As
vowels, they double as ‘u’ (asfood), ‘e’ and ‘i".

Table 2: Romanization used in the report

Persian Letters

Romanization

Pronunciation

alef with madd A ather
alef a andor bedor so
be b boy
pe p pool
te t toy
se s sun
jim J Joe
che ch church
he H horse
khe X similar to German bah
dal d dog
zal z Zorro
re r similar to Spanish “r”
ze z Zorro
zhe i miragye
sin s sun
shin sh shoe
sat S sun
zat VA Zorro
ta T toy
za Z Zorro
eyn R andor bedor so or
uh oh (glottal stop)
gheyn Q similar toFrench “r”
fe f fun
ghaf q similar toFrench “r”
kaf k kite
gaf g great
lam | love
mim m Mary
nun n nun
vav v veryor food
he h horse
ye with hamze i youor uh oh (glottal stop)
ye y youor sea

short space (markin
final form character

l

3

Word Boundaries

The task of the tokenizer is to detect word boundaries in a written text and to provide a uniform
segmentation before the processing of the text takes place. In Persian text, word boundaries can be
delimited by space, punctuation, and the forms of the characters indicating its position within a
word. Words can also be written concatenated. Similarly, some morphemes may appear in either
attached or detached form. This section discusses all the possible word and morpheme
combinations in a written Persian text as well as the possible boundary markers. The final
segmentations produced by the tokenizer will treat all words, including the subparts of a
compound or light verb, as separate tokens. All detachable morphemes, however, will be analyzed
as forming a single token unit with the word from which they are separated by a short space
character (a zero-width-joiner). If the string is ambiguous, then the tokenizer will produce multiple
segmentations.

3.1 Punctuation

Certain punctuation marks denote sentence boundaries. In Persian, the stop, the exclamative and
the interrogation mark are unambiguous boundary indicators. The stop also marks a sentence
boundary, but it may also appear in the formation of abbreviations or acronyms. Apart from the
slash (/), which is used in numbers, and the dash, which could be used to separate compound
words, the other punctuation marks unambiguously indicate word boundaries. These include the
comma, quotes, brackets and colon.

The low-level tokenizer tags all punctuation and dashes as the sefgarator The parser used in

the Shiraz project does not take into account any tokens that have not been tagged as Word tokens;
all tokens that are not Word tokens are taken to be a hard (i.e., sentence) boundary. Hence, another
module needs to distinguish between separators that are sentence boundary markers and those that
are word boundary markers, otherwise no syntactic parse will be applied across the latter and the
sentential analysis will not be obtained. In our system, the word boundary marking separators have
been included within the syntactic grammar. For instance, the comma is incorporated in the
syntactic rules to determine a phrasal boundary.

3.2 Space

In Persian text, the boundaries for distinct words are usually denoted by a space. No space appears

between the two words forming a compound or a light verb construfctibinis spacing pattern,
however, is not very consistent and sometimes different words may appear without a space
separating them; these concatenated words will be discussed in the following section. In the low-
level tokenizer, a space is tagged as a separator token and is able to separate distinct token words
successfully.

3.3 Word and Morpheme Boundary

3.3.1 Character Forms

The Persian writing system distinguishes between the final forms and the initial or medial forms of

a character, depending on its position within a word. This is illustrated in Figure 1. An initial form
does not mean that the character is in the beginning of a word, it only indicates that the character is
not at the end of the word. Characters are in medial form if they have an attaching character both
before and after them. A final form character indicates the end of a word and can be used by the
tokenizer to determine word boundaries. Hence, two concatenated words can be put into separate
tokens if the first word ends in a final form character. These final forms are indicated by a zero-
width-joiner following the character in Unicode. For transliteration purposes, we will use the
standardilda (~) to denote this control character.

final medial initial

£ 4 £ g

= a — “J”

Figure 1: Sample Persian character forms

There are certain lettersaléf, dal, zal, re, ze, zhe, vavhowever, that have only one form
regardless of their position within the word. If such a character ends the first word of a
concatenated pair, the tokenizer will not be able to use the character form to determine the word
boundary (see Section 3.3.3, “Algorithm for Unknown Words”, for the algorithm used in these
situations).

Compound and light verb constructions most often appear without a space separating the two
parts. If the first word within the compound ends in a final form character, the two parts will be
separated into distinct tokens by the tokenizer, as shown in (1) for a compound string and in (2) for
a light verb string. Both compounds and light verbs are recognized as a single lexical unit at a later
stage in the processing.

2. Alight verb constructions a verbal unit consisting of a preverbal element (usually a noun, adjective, or preposition)
followed by a light verb (e.g.krdn “do”, dadn“give”). The latter has partly or completely lost its original meaning]
vyllthar] this construction. In that sense, the light verb construction behaves like a compound and needs to be included in
the dictionary.

Q) “riys~Imhvr’-->“riys™Imhvr”
Lit.: head republic
‘President’

(2) “zng~zdnd’-->“zng”“zdnd”
Lit.: bell hit (past/3pl)
‘(they) phoned’

Certain morphemes always appear attached to the word whereas others could be written either
attached or separated by a zero-width-joiner. Rarely, the detached morphemes appear separated
from the word by an intervening space. The attached morphemes are analyzed as one token with
the word they appear on, but detached morphemes will be treated as a separate token by the low-
level tokenizer. The post-tokenizer is then used to join the detached morpheme back on the word in
order to form a single token as input to the morphological analyzer. When a morpheme is
reattached to the stem, a short space character (~) or zero-width-joiner must separate the
morpheme and the word. The reason for the insertion of this character is illustrated in the examples
below. Consider the string in (3), which consists of a noun meaning ‘letter’ followed by the
Indefinite marker. The low-level tokenizer will separate the stem noun and the indefinite
morpheme into two distinct tokens as shown. When the post-tokenizer reattaches the morpheme to
the stem, it should insert a zero-width-joiner in order to obtain the original string. If the zero-
width-joiner was not inserted between the word and the morpheme, the resulting string will be as
given in (4), which is a different word and morpheme combination altogether, as can be seen from
the translation provided. Hence, the post-tokenizer algorithm should introduce a zero-width-joiner
before reattaching a morpheme in order to maintain the distinction between attached and detached

inflection in Persian.

(3) Linamh~ayi!__>“namhﬂ“ay”
letter-Indef
‘a letter’
(4) “namhay”

name-Plur-Ezafe
‘(the) names of’

3.3.2 Algorithm for Word and Morpheme Boundary Detection

The algorithm used by the post-tokenizer needs to consider all the possible word and morpheme
combinations and provide all the segmentation patterns. In the final result, words are separated into
distinct tokens. Morphemes that appear in attached form in the text will remain attached to the
stem. Detached morphemes will appear separated by a short space (~) or zero-width-joiner.

As an example, consider the string “shrab~xvb” (=good wine), which is separated by a short space
character indicating a final form letter. For all occurrences of final form letters followed by an
initial form character, the low-level tokenizer separates the string into two distinct tokens. The
string in this example will be separated into the two distinct tokens “shrab” and “xvb”. If these
tokens represent two distinct words, the segmentation is complete. If one of the strings is a
morpheme, however, it will need to be reattached before the strings are sent to the morphological
analyzer. This is done in the post-tokenizer. The following provides this algorithm, which is
applied to the output of the low-level tokenizer.

3. The Ezafe is a morpheme that links the head of a phrase to the following constituents.

Post-Tokenizer Algorithm

We look at two consecutive strings in each case. Each token is to be checked against the
morphemes liét

» If both strings are not morphemes, they remain separated. Nothing needs to be done.

(5) “shrab” “xvb"0 “shrab™xvb”
wine good

» If one of the strings is a morpheme which is not ambiguous with a word, reattach the
morpheme. Insert a zero-width-joiner between word and morpheme.

(6) “kvtah” “tryn”-->"kvtah~tryn”
short est

» If one of the strings is a morpheme which is ambiguous with a word, two segmentations
result: In one case, the strings remain detached; in the other, they get reattached with an
intervening zero-width-joiner.

@) “my~""“rqSm~"-->1. “my” “rqSm”
IMPdancing(1sg)2. “my~rgSm”
‘() am dancing.
[where “my” can also mean “wine”]

3.3.3 Algorithm for Unknown Words

Concatenated words are a very common site in Persian text. The examples in (8) were extracted
from our on-line corpus; they represent various instances of concatenated words. In all of these
cases, the first word does not end in a final form character, hence the low-level tokenizer will not
be able to separate the words into distinct tokens. As shown in these examples, besides actual
compounds and light verbs, short prepositions, conjunctions and the object-marking postposition
appear next to the following or preceding word without an intervening space. Two distinct words

may also appear concatenated. The last example shows a concatenated case that has separated the

parts of a light verb. In this example, the object-marking postpositiarf the previous word has
been concatenated to the preverbal elemehtdf the light verbrd krdnd (‘they refused’), thus
separating the two parts of the light verb.

(8) a. compoundamvrxarJh-->amvr xarJh
affairs foreign
‘foreign affairs’
b. light verbgpyshnhadkrdnd--> pyshnhad krdnd
proposedid(3pl)
‘(they) proposed.’
c. prepositiorazShyvnystha--> az Shyvnystha
fromZionists
‘from the Zionists’
d. conjunctiontablvv-->tablvv
painting and
‘painting and’

4. The Appendix provides a list of the morphemes that can appear detached with an indication of the ones that can be
ambiguous with a word.

e. postpositiokshvrra-->kshvrra
countryObj
‘the country’ (object of sentence)
f. distinct word$rAyndbykarsazy-->frAyndbykarsazy
processunemployment
‘(the) process of unemployment’
nystndayran-->nystndayran
are notlran
‘..(they) are not Iran..
g. separated wordsard krdnd-->rard krdnd
Obj refusal did(3pl)
‘.. (they) refused ..

These examples show that it is essential for a Persian tokenizer to include an algorithm to
recognize and separate concatenated words.The previous section discussed cases of concatenated
words in which the first word ends in a final form character that can be used to detect the word
boundary. If the concatenated word ends in a character that does not have a final form version as in
the examples in (8), then the low-level tokenizer is unable to recognize the two words as distinct
tokens. We suggest to apply an algorithm to these concatenated words that will insert a space
following characters without a final form. These charactersadet{a), dal(d), zalf), re(r), ze(z),

zhe(j), vav(v)Since one or both words may be inflected, the separated tokens need to also undergo
morphological analysis. In the current Shiraz system, the algorithm has been implemented (with
slight variations) in the pre-processor component of the system, where concatenation problems are

resolved before analysis of text begins

Unknown Word Algorithm

 For all occurrences of characters that do not have a final form &.d.z r z j v), the
tokenizer produces two segmentations: one in which a space is inserted following these
characters and one without a space. A space need not be inserted after the final character in
the string. We could eliminate some of the unwanted cases by discarding any combination
that contains a single letter (except for “v”, which is the conjunction ‘and’). It is also
possible to eliminate certain combinations if the last string is a morpheme which is not
ambiguous with a word. For instance, if the stringgafryn (=travelers) results in the
segmentation “msafr” “yn”, since “yn” is a plural morpheme and it is not ambiguous with a
word, this particular segmentation will be eliminated. As an illustration, consider the
example in (9), where all single letter segmentations have been eliminated. In this instance,
a space is inserted following the charactkrg r.

9 “dvrdnya’-->1."dv” “rd” “nya”
around world2."dvr” “dnya” [correct segmentation]
3."dvrd” “nya”
4."dv” “rdnya”

» Since the concatenated words may be conjugated, the segmented parts need to undergo
morphological analysis before being looked up in the dictionary. (10) is a lightoreav
zd(‘(he/she) stabbed’; Lit.: knife hit-3sg) with its parts concatenated. The preverbal element
chagv(knife) ends inv, a character that does not have a final form, and the verbakgart

5. A more efficient method might be to apply this algorithm only to words that have not been recognized after
morphological analysis and dictionary look-up (i.e., unknown words). Certain simplifications that have been allowed in
the pre-processor component can then be eliminated since the algorithm will not be running on every single word in the
text, but only on unknown words.

10

(hit-3sQ) is conjugated. In order to recognize the verb in the dictiogdtyas to go through
morphological analysis in order to obtain the citation form of the zehto(to hit).

(10) “Chaqud”"> 1 nChau uqudu

2. “chagv” “zd” [correct segmentation)
3. “Chaﬂ “qV” “Zd”

11

4

Disambiguating Sentence Boundaries

The stop is an ambiguous punctuation mark in Persian text since it can represent a period at the
end of a sentence or it can be part of an abbreviation or an acronym. This report is a specification
for disambiguating the sentence boundary by determining whether a stop encountered in text is a
hard boundary marker or part of an abbreviation or acronym. This specification has not been

included in the current version of the Shiraz tokenizer, since abbreviations and acronyms are

extremely rare in our corpus (3 acronyms and no abbreviations in a 3000-sentence corpus), but it
should be considered for a more complete tokenization process.

Although a stop is usually followed by a space in Persian text, this pattern is not very consistent
and oftentimes the stop is immediately followed by another character. Acronyms and
abbreviations, however, have an easily recognizable structure. Hence, in order to isolate sentences
in a Persian text, the tokenizer should determine whether the stop is an element of an acronym or
an abbreviation before treating it as a sentence boundary. Note that if the abbreviation or acronym
appears at the end of the sentence, the stop can be a sentence boundary as well as an element of the
token.

This report defines certain structures that could potentially be recognized as acronyms or
abbreviations. When a stop is encountered in a string, the latter could be matched against these
structures. The system may also contain sub-dictionaries in order to determine whether a certain
string belongs to the abbreviation or acronym token classes. If the match fails, the tokenizer could
proceed to segment sentences. In certain cases, the string containing the stop may be ambiguous
between two constructions. In such cases, the tokenizer will produce all alternate parses for that
structure. Section 4.3 brings together all the possible combinations of acronyms, abbreviations,
and stops that denote sentence boundaries, and provides an outline of the tokenization rules needed
to resolve the ambiguities produced.

4.1 Acronyms

4.1.1 Descriptive Analysis

The acronym could be identified by its surface structure, based on a conjunction of characters and
punctuation. The most general format for forming an acronym consists of one or more characters

12

(ending in a final form if available) and followed by a stop. In this format, each Roman character
of the acronym is transliterated into Persian according to the transliteration pattern in Table 3 on
page 14. This is illustrated in the examples below. In the examples in (11), the last character before

the stop ends in a final foffras marked by the short space character ~. In the acronyms in (12),
however, since the Persian characteasida do not have a final form, the short space character is
not available.

(12) af~by~.Ay~FBI
by~.by~.syBBC

(12) ar.py~.JyRPG
ka.g~.bKGB

There exist, however, variations to this format. Certain magazines and newspapers form the
acronyms without a stop as shown in (13).

(13) by~by~syBBC

The acronyms that can be represented in this format usually consist of Roman letters that are
transliterated into Persian with an ending character that has a final form. In other words, the
examples in (11) could be written without a stop separating the transliterated forms since the last
character before each stop is a final form character. The examples in (12), however, contain non-
final form characters before the stop (e.gnda) and thus could not be written without it.

Certain words that are considered acronyms in English are treated as proper nouns in Persian and
are not represented by a letter by letter transliteration; they are written instead as they are
pronounced as shown in the following examples.

(14) syeCIA
aydAIDS

Note that all acronyms in the language are transliterated forms of foreign acronyms. We have not
found any Persian acronyms written in the format described in the examples (11) through (13).
Instead, Persian acronyms follow the pattern illustrated in (14) and should be treated as proper
names. The examples shown below are instances of such acronyms,satekes the acronym

for sazman amnyt v a’Tla’at kshyBecurity and Information Agency of the Country), amthJa

stands fornyrvy dryayy artsh Jmhvry aslamy yrgMarine Forces of the Military of Islamic
Republic of Iran).

(15) savak~(Savak)
ndaJaNedaja)

6. See the document “Persian Tokenization”, included in this volume, for a description of final form characters in
Persian. The characters that lack the final formaacez, r, z, zh, v.

13

Table 3: Roman characters and the corresponding Persian transliterations

Roman
character Persian transliteration

a (or Aword-initially)
by~or b~
sy~

dy~

ay~

af~

g~

ach~
ay~

Jy~
ky~or ka
al~

am-~

ar
as~
ty~
yv
vy~
dblyv
ayks~
vay~

N <X X = <|C|HW0nXIO DO ZZ|X<“—|ITO MmO O = >
[<}]

4.1.2 Ambiguous Constructions

Since acronyms have an easily recognizable structure, they are not usually ambiguous with other
constructions. The only acronym format that might be ambiguous with words is the one
exemplified in (13) which appears without any stops. The construction in this example has the
surface form of a compound consisting of three parts and it can easily be recognized in the
compound lookup component.

When a potential acronym has been detected, it could then be checked in the dictionary. If the
token does not exist in the dictionary, it can be translated following either the transliteration
patterns given in Table 3.

The stop ending an acronym is also ambiguous with a full-stop, a sentence boundary marker.

14

4.1.3 Summary

Format

The format for acronyms could be represented by the following rules:

For the case of acronyms, the characters [Aa-y] do not represent an arbitrary sequence of letters
but are the Persian transliterations of foreign letters following the formats given in Table 3.

1. ([Aa-y]+\~?\)+[Aa-y]+\~?\.?
One or more combination of one or more letters followed by a stop. The last stop is
optional. This rule represents the examples shown in (11) and (12).

2. ([Aa-y][+\~)+[Aa-y]+\~?
One or more combination of one or more letters, ending in a final-form character, not
followed by a stop. This is the format illustrated in example (13).

Ambiguities
Format 1 above is not ambiguous with words, but it may end with a stop, which makes it
ambiguous with the end of a sentence.

Format 2, on the other hand, represents acronyms that are ambiguous with words and morphemes
but are not potential markers for an end of sentence since they contain no stops. These tokens are
treated as compounds, hence they are sent to the low-level tokenizer as is.

4.2 Abbreviations

4.2.1 Descriptive Analsysis

Abbreviations can appear as a single character with or without a stop, as shown in (16). The letter
v is not usually written without a stop sineas a word in Persian, the conjunction “and”. A word

is also abbreviated if it consists of one or more characters and the last character before the stop is
left non-final as illustrated in the examples in (17), where characters sunloiag that have final

forms, appear without a short space character (Ndte that if the last character is among those
which do not have a final form (e.q), this distinction would not be available as the examples in
(18) show.

(16) S~for SfHh~(=page)
m-~for mylady~(=A.D.)
m~formylady~(=A.D.)

(17) AlmforAlmany~(=German)
angforanglysy~(=English)

(18) fr.forfransh~(=French)
ar.for armny~(=Armenian)

The example below indicates the usual format for abbreviating authors’ names:

7. In order to obtain a non-final form before a stop, a control character (the zero-width-non-joiner, ZWNJ) appears in
certain encodings to force the non-final form of the letter.

15

(29) J~. m~forJlal~ mtyny~(Jalal Matini)

The abbreviation formats, however, are not very consistent. Example (20) illustrates the three

possible abbreviation forms used, in various articles in the same magjafinéndicating the

lunar calendar yedrJry~ gmry~As can be seen from these cases, the two characters abbreviating
the lexical element can be written with stops following both, or a stop following only the last
character, or simply separated by a space without any stops. Note that in all of these instances, the
first character appears in non-final form whereas the last character is final.

(20) h.g~.
h g~.
h g~

4.2.2 Ambiguous Constructions

Once more, any stop appearing on an abbreviation is ambiguous with a full-stop and can thus mark
the end of a sentence.

Any of the single character abbreviation patterns (i.e., the examples in (16), (19) and (20)) are

unambiguous with words but if followed by a stop, these tokens might also indicate the end of the

sentence. In these cases, the tokenizer should produce both possibilities: the token as an
abbreviation only or the token as an abbreviation but also indicating the end of the sentence.

Similar ambiguous outputs should be available when the tokenizer encounters a token of the
format in (17).

If the tokenizer finds a combination of two or more letters ending in one of the characters that does
not have a final form as shown in (18), the string could be either an abbreviation or a word. In
addition, the stop is ambiguous with a period at the end of the sentence. In such cases, the
tokenizer will produce three outputs: the token can be an abbreviation, it could be an abbreviation
marking the end of a sentence, or it could be a word marking the end of a sentence.

4.2.3 Summary

Format
The following formats are then available for abbreviations in a Persian text:

1. Single letter: A single letter ending in final form, the stop is optional.
[Aa-y\~\.?
This format is exemplified in (16).

2. Non-final forms: One or more letters ending in a (forced) non-final form, followed by a
stop.
[Aa-y]+[FF\.
where [FF] is the set of characters that have a final form.
This rule represents the formats illustrated in the examples in (17).

3. Non-final characters: One or more letters ending in a character without a final form,
followed by a stop.
[Aa-y]+[NFF)\.

8. Majalle-ye Iranshenagdilranshenasi - Journal of Iranian Studies)

16

where [NFF] is the set of characters that don’t have a final form.
This rule represents the examples in (18).

4. Initials: Single letters separated with stops and/or spaces, followed by a single final form
character. Final stop optional.
[Aa-y[\~?[\.] ?[Aa-y]\~?\.?
The examples in (19) and (20) are represented by this rule.

Ambiguities

Format rules 1, 2, and 4 all represent tokens that are not ambiguous with a word, but which are
ambiguous with the end of the sentence if they are followed by a stop. Note that the stop is
optional in rules 1 and 4, but it is obligatory in rule 2. The tokenizer will then produce two possible
outputs: in the first case, the token is to be treated only as an abbreviation, and in the second case,
the token is an abbreviation marking the end of the sentence.

Rule 3 denotes a token which is potentially ambiguous between an abbreviation and a word.
Furthermore, since it is followed by a stop, then it is also a potential marker for the end of the
sentence. The final output then consists of three possible cases: the token is an abbreviation, the
token is an abbreviation marking the end of the sentence, or the token is a word marking a sentence
boundary.

4.3 Abbreviations, Acronyms and Sentence Interaction

In this section we bring together the previous discussion by presenting an outline of all the
possible cases for abbreviations and acronyms. The section also provides the tokenization rules
needed to resolve the ambiguities resulting from the interaction of these tokens with sentence
boundaries.

Following the application of the format rules described in the previous sections, the tokenizer
recognizes potential acronyms and abbreviations in the text. Each token should be marked as

e ambiguous or not ambiguous with a word.

e ambiguous or not ambiguous with an end of sentence (i.e., determine if the token is
followed by a stop or not).

If a token is not ambiguous with a word, then the tokenizer creates the token. If a token is
ambiguous with a word, then the tokenizer should create, in addition, a word token. Furthermore,

if a token is not ambiguous with the end of the sentence (EOS), then no action should be taken by
the tokenizer. However, if the token is followed by a stop, then the tokenizer should also create a
new sentence boundary as illustrated in the figure below. In order to do this, the tokenizer needs to
copy the open sentence set (e.g., copy sentence 1 in the figure into sentence 2) and close the new

17

set thus created. A new sentence set is then opened (sentence 3 in the figure).

Sentencel

Sentence2 Sentence3

/ 54
LI

Figure 2: Creating a sentence boundary

The table below shows the ambiguity combinations possible and the action the tokenizer should
take in each case. The format rules that were used for the recognition of the token involved in each
instance are also indicated in the Input Token column. (The Acronym rule 1 and Abbreviation
rules 1 and 4 are present in both of the first cases because the final stop is optional in these
instances.).

Table 4: Tokenization Rules for segmenting Acronyms, Abbreviations and Sentence Boundaries.

Input token Tokenizer output

1. Token is not ambiguous with a wordé Create the token as an acronym or an
morpheme Token is not ambiguous with abbreviation

EOS * Proceed to the next token

Format Rules:

Acronym rule 1

Abbreviation rules 1, 4
2. Token is not ambiguous with a word# Create the token as an acronym or as an

morpheme abbreviation

Token is ambigUOUS with EOS « Create sentence boundary

» Proceed to the next token. If there is a
stop, proceed to the next token
following the stop.

Format Rules:
Acronym rule 1
Abbreviation rules 1, 2, 4
3. Token is ambiguous with a word/morpheme | ¢ Create the token as word
Token is not ambiguous with EOS

* Proceed to the next token

Format Rules:

Acronym rule 2
4. Token is ambiguous with a word/morpheme | < Create the token as an abbreviation

Token is ambiguous with EOS

» Create word token

Format Rules: Create sentence boundary
Abbreviation rule 3 « Proceed to the next token following the
stop

18

5

Conclusion

The Persian tokenizer used in the Shiraz project uses a language-independent low-level tokenizer
to separate textual elements into basic tokens. A post-tokenizer containing language-specific
information is then applied to the output of the low-level tokenizer in order to reattach any
separated detachable morphemes. Hence, the Persian tokenizer can successfully separate most
concatenated words into distinct tokens, without losing the inflection that appears on the words.
The rest of the concatenated words are taken care of in the pre-processor component which
accurately inserts a space between the words.

For a more complete tokenizer, the grammars for recognizing numerical, date and time

expressions in newspaper texts should also be included. In addition, specifications for

disambiguating sentence boundaries and recognition of acronyms and abbreviations are to be
incorporated in the tokenizer.

19

Appendix

This appendix contains a list of detachable Persian prefixes and suffixes used by the post-tokenizer
in reattaching separated morphemes. These affixes may be ambiguous with words. Note that some
members of this list consist of the concatenation of several affixes. It is possible to enumerate all
such cases in Persian since there are a limited number of affixes and they follow strict
morphotactic patterns. Listing the combinations of affixes, as done here, allows the post-tokenizer
to recognize the detached suffixes and prefixes without using an algorithm for computing

morphotactics.

Persian Affix Inflection Information Affix Type Ambiguous with word
by derivationalor subjunctive particle prefix no
my imperfective verbal particle prefix no
nmy negation + imperfective particle prefix no
ha plural suffix yes (interjection ‘hey’)
hay plural + ezafe suffix yes (interjection ‘hey’)
ay indefinite marker suffix yes (interjection ‘hey’)
am copula/auxiliary/pronoun clitic (1sg) suffix yes (noun ‘mother’ -arabic)
shan pronoun clitic (3pl) suffix yes (noun ‘dignity’)
tr comparative suffix yes (adjective ‘wet’)
try comparative + copula (2sg) suffix yes (adj. ‘wet’ + copula)
ayst indefinite + copula (3sg) suffix yes (noun/interj. ‘stop’
ast auxiliary (3sg) suffix yes (copula/3sg ‘is’)
hayy / haiy plural + indefinite suffix no
haym plural + pronoun clitic (1sg) suffix no
hayt plural + pronoun clitic (2sg) suffix no
haysh plural + pronoun clitic (3sg) suffix no
hayman plural + pronoun clitic (1pl) suffix no
haytan plural + pronoun clitic (2pl) suffix no
hayshan plural + pronoun clitic (3pl) suffix no
hast plural + copula (3sg) suffix no
hayym plural + copula (1pl) suffix no
hayyd plural + copula (2pl) suffix no
haynd plural + copula (3pl) suffix no
at pronoun clitic (2sg) suffix no
ash pronoun clitic (3sg) suffix no
man pronoun clitic (1pl) suffix no
tan pronoun clitic (2pl) suffix no
aym auxiliary (1pl) suffix no

20

Persian Affix Inflection Information Affix Type Ambiguous with word
ayd auxiliary (2pl) suffix no
and auxiliary (3pl) suffix no
tryn superlative suffix no

trynha superlative + plural suffix no
trha comparative + plural suffix no
trynm superlative + pronoun clitic (1sg) suffix no
trynt superlative + pronoun clitic (2sg) suffix no
trynsh superlative + pronoun clitic (3sg) suffix no
trynman superlative + pronoun clitic (1pl) suffix no
tryntan superlative + pronoun clitic (2pl) suffix no
trynshan superlative + pronoun clitic (3pl) suffix no
; (hamze) ezafe suffix no

21

https://www.researchgate.net/publication/247266804

	Abstract
	Contents
	3.1 Punctuation 6
	3.2 Space 7
	3.3 Word and Morpheme Boundary 7
	4.1 Acronyms 12
	4.2 Abbreviations 15
	4.3 Abbreviations, Acronyms and Sentence Interaction 17

	1
	Introduction

	2
	Persian Letters
	Table 1: Persian Alphabet
	Table 2: Romanization used in the report

	3
	Word Boundaries
	3.1 Punctuation
	3.2 Space
	3.3 Word and Morpheme Boundary
	3.3.1��� Character Forms
	Figure 1�:�� Sample Persian character forms
	(1) “riys~Jmhvr” --> “riys” “Jmhvr” Lit.: head republic ‘President‘
	(2) “zng~zdnd” --> “zng” “zdnd” Lit.: bell hit (past/3pl) ‘(they) phoned‘
	(3) “namh~ay” --> “namh” “ay” letter-Indef ‘a letter’
	(4) “namhay” name-Plur-Ezafe ‘(the) names of’

	3.3.2��� Algorithm for Word and Morpheme Boundary Detection
	(5) “shrab” “xvb” › “shrab” “xvb” wine good
	(6) “kvtah” “tryn” --> “kvtah~tryn” short est
	(7) “my~” “rqSm~” --> 1. “my” “rqSm” IMP dancing(1sg) 2. “my~rqSm” ‘(I) am dancing.’ [where “my” ...

	3.3.3��� Algorithm for Unknown Words
	(8) a. compounds amvrxarJh --> amvr xarJh affairs foreign ‘foreign affairs’ b. light verbs pyshnh...
	(9) “dvrdnya” --> 1."dv” “rd” “nya” around world 2."dvr” “dnya” [correct segmentation] 3."dvrd” “...
	(10) “chaqvzd” --> 1. “cha” “qvzd” 2. “chaqv” “zd” [correct segmentation] 3. “cha” “qv” “zd”

	4
	Disambiguating Sentence Boundaries
	4.1 Acronyms
	4.1.1��� Descriptive Analysis
	(11) af~.by~.Ay~ FBI by~.by~.sy~ BBC
	(12) ar.py~.Jy~ RPG ka.g~.b~ KGB
	(13) by~by~sy~ BBC
	(14) sya CIA aydz AIDS
	(15) savak~ (Savak) ndaJa (Nedaja)
	Table 3: Roman characters and the corresponding Persian transliterations

	4.1.2��� Ambiguous Constructions
	4.1.3��� Summary
	Format
	1. ([Aa-y]+\~?\.)+[Aa-y]+\~?\.? One or more combination of one or more letters followed by a stop...
	2. ([Aa-y]+\~)+[Aa-y]+\~? One or more combination of one or more letters, ending in a final-form ...
	Ambiguities

	4.2 Abbreviations
	4.2.1��� Descriptive Analsysis
	(16) S~ for SfHh~ (=page) m~ for mylady~ (=A.D.) m~. for mylady~ (=A.D.)
	(17) Alm. for Almany~ (=German) ang. for anglysy~ (=English)
	(18) fr. for fransh~ (=French) ar. for armny~ (=Armenian)
	(19) J~. m~. for Jlal~ mtyny~ (Jalal Matini)
	(20) h.q~. h q~. h q~

	4.2.2��� Ambiguous Constructions
	4.2.3��� Summary
	Format
	1. Single letter: A single letter ending in final form, the stop is optional. [Aa-y]\~\.? This fo...
	2. Non-final forms: One or more letters ending in a (forced) non-final form, followed by a stop. ...
	3. Non-final characters: One or more letters ending in a character without a final form, followed...
	4. Initials: Single letters separated with stops and/or spaces, followed by a single final form c...
	Ambiguities

	4.3 Abbreviations, Acronyms and Sentence Interaction
	Figure 2�:�� Creating a sentence boundary
	Table 4: Tokenization Rules for segmenting Acronyms, Abbreviations and Sentence Boundaries.
	1. Token is not ambiguous with a word/ morpheme Token is not ambiguous with EOS Format Rules: Acr...
	2. Token is not ambiguous with a word/ morpheme Token is ambiguous with EOS Format Rules: Acronym...

	5
	Conclusion
	Appendix

